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In a recent study, Sotiropoulos et al. (2001) studied numerically the chaotic particle
paths in the interior of stationary vortex-breakdown bubbles that form in a closed
cylindrical container with a rotating lid. Here we report the first experimental ver-
ification of these numerical findings along with new insights into the dynamics of
vortex-breakdown bubbles. We visualize the Lagrangian transport within the bubbles
using planar laser-induced fluorescence (LIF) and show that even though the flow
fields are steady – from the Eulerian standpoint – the spatial distribution of the dye
tracer varies continuously, and in a seemingly random manner, over very long obser-
vation intervals. This finding is consistent with the arbitrarily long Šil’nikov transients
of upstream-originating orbits documented numerically by Sotiropoulos et al. (2001).
Sequences of instantaneous LIF images also show that the steady bubbles exchange
fluid with the outer flow via random bursting events during which blobs of dye exit
the bubble through the spiral-in saddle. We construct experimental Poincaré maps
by time-averaging a sufficiently long sequence of instantaneous LIF images. Ergodic
theory concepts (Mezić & Sotiropoulos 2002) can be used to formally show that the
level sets of the resulting time-averaged light intensity field reveal the invariant sets
(unmixed islands) of the flow. The experimental Poincaré maps are in good agreement
with the numerical computations. We apply this method to visualize the dynamics
in the interior of the vortex-breakdown bubble that forms in the wake of the first
bubble for governing parameters in the steady, two-bubble regime. In striking con-
trast with the asymmetric image obtained for the first bubble, the time-averaged light
intensity field for the second bubble is remarkably axisymmetric. Numerical compu-
tations confirm this finding and further reveal that the apparent axisymmetry of this
bubble is due to the fact that orbits in its interior exhibit quasi-periodic dynamics.
We argue that this stark contrast in dynamics should be attributed to differences
in the swirl-to-axial velocity ratio in the vicinity of each bubble. By studying the
bifurcations of a simple dynamical system, with manifold topology resembling that
of a vortex-breakdown bubble, we show that sufficiently high swirl intensities can
stabilize the chaotic orbits, leading to quasi-periodic dynamics.

1. Introduction
Vortex breakdown has been among the most widely studied fluid mechanics phe-

nomena since it was first discovered to occur over delta wings by Peckham & Atkinson
(1957). The term is typically used to denote a very complex and abrupt transformation
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(a)

(b)

Figure 1. Visualization of vortex-breakdown bubbles in swirling flow through a circular diffuser.
(a) Re = 3400, swirl ratio = 1.75; (b) Re = 3800, swirl ratio = 1.75 (Sarpkaya 1971a and private
communication).

of a columnar vortex into a much larger structure, which could involve recirculation
and unsteadiness. The numerous areas of engineering practice where vortex break-
down is important, along with its multifaceted aspects that still elude a comprehensive
theory, are well known and documented in a series of review papers by Leibovich
(1978, 1984), Escudier (1988), Delery (1994), and Sarpkaya (1995).

The various modes of vortex breakdown were identified in the pioneering flow
visualization experiments by Sarpkaya (1971a, b) and Faler & Leibovich (1977) and
essentially include the double helix, bubble, and spiral forms – see Faler & Leibovich
(1977) for a more detailed classification. Perhaps the most intriguing and still poorly
understood of these modes is the ‘axisymmetric’ bubble-like disturbance, known as the
vortex-breakdown bubble. Figure 1 shows two of Sarpkaya’s (1971a) dye-visualization
photographs of such bubbles in a straight circular diffuser. Sarpkaya (1971a, b), among
others, pointed out that: (i) the flow in the interior of the bubbles is unsteady and is
dominated by the gyrations of a tilted toroidal ring; (ii) the bubbles exchange fluid
with the ambient flow via unsteady fluctuations through their open downstream end;
and (iii) certain combinations of swirl intensity and Reynolds number yield smoother
and more axisymmetric bubble shapes (figures 1a and 1b). Faler & Leibovich (1977)
subsequently verified many of Sarpkaya’s observations and described in more detail
the highly unsteady motion of a corkscrew-like dye filament along the axis in the
interior of the bubble. Faler & Leibovich (1977) reported that this spiral filament
appeared and disappeared in a random fashion in their experiment.
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It is important to recognize that a great deal of what we know today about
vortex breakdown has been derived from laboratory dye visualization experiments
such as the one shown in figure 1. That is, conclusions concerning fundamental
Eulerian aspects of the phenomenon (steady or inherently unsteady, axisymmetric
vs. three-dimensional, etc.) have been largely based on Lagrangian visualizations of
the flow fields. It is known, however, that Lagrangian and Eulerian descriptions of
the same flow field can lead to drastically different conclusions about its complexity.
Aref (1984) coined the term chaotic advection to describe such situations, where
an innocuous, from the Eulerian standpoint, velocity field – such as a time-periodic
two- or three-dimensional flow or even a steady three-dimensional flow – gives rise
to chaotic Lagrangian dynamics. The first evidence that vortex-breakdown bubbles
exhibit chaotic particle paths was reported in the recent study by Sotiropoulos,
Ventikos & Lackey (2001) who studied numerically the Lagrangian characteristics of
steady breakdown bubbles in a closed cylindrical container with a rotating lid – see
Escudier (1984) for benchmark experiments and Spohn, Mory & Hopfinger (1998)
and Sotiropoulos & Ventikos (2001) for a detailed discussion of this flow. Sotiropoulos
et al. (2001) showed that the dynamics in the interior of stationary vortex-breakdown
bubbles is consistent with what one would anticipate for a mildly perturbed, volume-
preserving dynamical system: KAM-tori, cantori, and periodic islands were found
embedded within chaotic regions. They argued that the onset of chaos in such flows
is a manifestation of Šil’nikov’s (1965) phenomenon and provided evidence pointing
to the conclusion that a subset of measure zero of the total flux into the bubble may
stay in its interior arbitrarily long.

Some experimental evidence supporting the findings of Sotiropoulos et al. (2001)
was reported by Spohn et al. (1998) who showed that vortex-breakdown bubbles in the
container flow are open and asymmetric at their downstream end. Although Spohn et
al. (1998) did not link their findings to chaotic Lagrangian transport, the good agree-
ment between their visualization photographs and the computed streaklines reported
in Sotiropoulos & Ventikos (2001), along with the detailed analysis of the topology
of the flow by Sotiropoulos et al. (2001), clearly establishes such a link. It should be
emphasized, however, that direct laboratory evidence confirming the numerically iden-
tified rich Lagrangian dynamics in the interior of the bubbles has yet to be reported.

The objective of this work is to provide the first experimental evidence establishing
the chaotic nature of the flow in the interior of vortex-breakdown bubbles. We carry
out flow visualization experiments for two container aspect ratios and for various
Reynolds numbers using the laser-induced fluorescence (LIF) technique. We collect
and analyse long time-series of instantaneous LIF images and show that the dye
tracer motion in the interior of steady vortex-breakdown bubbles exhibits very long
transients. We also show that dye tracer does not exit the bubble through the spiral-in
saddle in a continuous manner but rather in a sequence of random bursting events. We
construct experimental Poincaré maps by time-averaging a sufficiently long time-series
of such images and plotting the level sets of the resulting time-averaged light intensity
field (Mezić & Sotiropoulos 2002). Applying this technique to study the dynamics
within vortex-breakdown bubbles in the steady, two-bubble regime, we show that in
striking contrast with the chaotic dynamics of the first bubble, orbits within the second
bubble remain confined on invariant quasi-periodic tori. We offer an explanation for
this surprising result by showing that sufficiently high swirl intensity can re-organize
the chaotic orbits and lead to quasi-periodic dynamics. We also discuss observations
from previous vortex-breakdown experiments in diffuser geometries in the light of
the new findings reported herein.
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The paper is organized as follows. In § 2 we discuss the phenomenon of vortex
breakdown from a dynamical systems point of view. In § 3 we describe our laboratory
apparatus and discuss the details of the various experimental procedures. In § 4 we
outline the experimental methodology for constructing Poincaré maps. In § 5 we
describe briefly the numerical method for obtaining the velocity fields and calculating
the particle paths. In § 6 we present and discuss the results of our experiments
along with some new computational findings that reinforce and clarify the laboratory
observations. In § 7 we show that many of our laboratory and computational findings
can be explained by studying the bifurcations of a simple dynamical system whose
manifold structure resembles that of a vortex-breakdown bubble. Closing remarks
and a discussion of our findings in the context of previous laboratory experiments in
diffuser geometries are given in § 8.

2. Vortex breakdown: a dynamical systems point of view
In this section, we present a brief review of previous work in the area of dynamical

systems that is directly relevant to the findings we report herein (see Sotiropoulos et
al. 2001 for more details). The issues and concepts discussed in this section provide the
theoretical framework for interpreting our computational and experimental findings.

The topology of a steady axisymmetric vortex-breakdown bubble consists of two
fixed hyperbolic points (stagnation points) and their respective stable and unstable
manifolds (Holmes 1984). The bubble surface is invariant (not accessible by upstream-
originating orbits) and its interior is foliated by invariant KAM-tori (the stream-
surfaces of the axisymmetric flow). That is, orbits in the interior of the bubble remain
confined on their respective tori and chaotic advection is not possible. If such a
flow structure could be realized in a laboratory experiment, upstream-originating dye
tracer would not be able to penetrate the bubble surface – at least not within an
interval shorter than molecular diffusion time scales. In any laboratory experiment,
however, small non-axisymmetric disturbances are bound to be present even when
great care is taken to design the apparatus and conduct the experiment (see extensive
discussion in Stevens et al. 1996). It is known from the theory of dynamical systems
(see for example Broer & Vetger 1984; Mezić & Wiggins 1994) that such disturbances,
even when their magnitude is arbitrarily small, could drastically alter the Lagrangian
properties of the flow by destroying the invariant stream-surfaces and leading to very
rich, chaotic dynamics.

Holmes (1984) was the first to suggest that the dynamics of an axisymmetric vortex-
breakdown bubble could be drastically altered by considering the effect of arbitrarily
small time-periodic perturbations. Such disturbances would destroy the invariance
of the bubble-like surface with orbits entering the bubble through its downstream
end and recirculating in its interior for arbitrarily long times before they finally exit.
Holmes considered in his analysis only the effects of time-periodic perturbations but
as shown by Broer & Vetger (1984) even stationary disturbances could give rise to a
very complex spatially chaotic flow via the mechanism discovered by Šil’nikov (1965)
– see Sotiropoulos et al. (2001) for a detailed discussion of the Šil’nikov mechanism
in the context of vortex breakdown. In a more recent study, MacKay (1994) further
argued that a subset of measure zero (i.e. a Cantor set) of the total flux into a
perturbed stationary bubble could remain trapped in its interior for arbitrarily long
times. These theoretical developments have important implications for laboratory
visualizations of vortex breakdown structures. For instance, such experiments using
dye-based techniques could reveal complexities that can neither be explained nor
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quantified by simply examining the properties of the Eulerian velocity field. Since even
an arbitrarily small steady non-axisymmetric perturbation of a steady axisymmetric
vortex-breakdown bubble could give rise to chaotic dynamics, one may observe in
the laboratory very complex spatial and temporal variations of the dye tracer even
though the transporting flow is stationary and ‘nearly’ axisymmetric. MacKay’s (1994)
conjectures further suggest that Lagrangian transients in the laboratory may persist
for arbitrarily long times – of course, a cut-off time in a real experiment will be set
by molecular diffusion – thus, creating an impression of ‘unsteady’ flow.

Perhaps the best example of this seemingly paradoxical behaviour is the flow in a
closed cylindrical container with a rotating lid, for which the first comprehensive flow
visualization experiments were reported by Escudier (1984) – see Goldshtik, Husain &
Hussain (1992), Husain, Hussain & Goldshtik (1995), Spohn et al. (1993, 1998), and
Stevens, Lopez & Cantwell (1999) for more recent experimental studies of various
aspects of this flow. Escudier’s experiments revealed that for container aspect ratios
H/R > 1.5 (where H is the cylinder length and R is the cylinder radius) there is
a threshold Reynolds number (Re = ΩR2/ν where Ω is the lid angular velocity
and ν is the kinematic viscosity of the fluid) above which one or more stationary
vortex-breakdown bubbles form along the container axis. Escudier’s photographs
show that a considerable quantity of fluorescent dye has penetrated the interior of
the bubble, thus suggesting that the bubble-like surface of the laboratory structure
is not invariant. Furthermore, there are distinct asymmetric folds at the downstream
end of the bubble, which are remarkably similar to those shown in the sketch
of Broer & Vetger (1984) – see figure 8 in Sotiropoulos et al. 2001. Yet numerical
solutions of the axisymmetric Navier–Stokes equations capture with good accuracy
the general flow patterns and the evolution of these patterns with Reynolds number
and container aspect ratio, observed in the laboratory both in the steady and unsteady
flow regimes (e.g. Lopez 1990; Lopez & Perry 1992; Gelfgat et al. 1996; Stevens et
al. 1999). Axisymmetric streamlines, of course, cannot reproduce the asymmetric
dye-tracer patterns observed in the laboratory. Recent experiments (Spohn et al.
1998) and three-dimensional numerical simulations (Sotiropoulos & Ventikos 2001;
Sotiropoulos et al. 2001) explained the origin of these asymmetries and showed that
the flow in the interior of steady vortex-breakdown bubbles exhibits chaotic particle
paths and very rich Lagrangian dynamics. In the subsequent sections of this paper, we
will provide experimental and additional computational evidence that further clarify
the issues discussed herein.

3. Experimental apparatus and flow visualization method
Experiments have been performed in a carefully constructed tank facility, shown

in figure 2. The test cell consisted of a cast acrylic cylinder with inner diameter of
203.2 ± 0.05 mm. The cylinder was submerged in a rectangular tank containing the
test fluid, thus minimizing optical distortions. In this case the index of refraction of
the fluid did not match the acrylic cylinder, thus slight distortions of the visualization
occurred due to light passing through the cylinder wall. The height of the non-rotating
Plexiglas endwall was adjustable between H/R = 1 and 4.

A variable-speed DC motor rotated the lower endwall of the test cell at speeds up
to 146 r.p.m. The surface of the rotating endwall was machined smooth; variation in
the surface height varied less than ± 0.02 mm during rotation. The gap between the
rotating endwall and the cylinder wall was 0.35± 0.05 mm. The motor speed was set
by a TTL control voltage signal provided to the DC motor controller.
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Figure 2. A schematic of the experimental apparatus.

The working solution was a glycerin/water mixture (roughly 3/1 by volume).
The viscosity of the mixture was in the neighbourhood of 50 cP at 25 ◦C and was
measured using a precision falling-ball viscometer at several temperatures over a range
of 10 ◦C. The fluid temperature was measured during the experiment to within 0.1 ◦C
in order to determine the viscosity. A precision mercury thermometer, submerged in
the rectangular tank immediately adjacent to the test volume, was used to measure
the temperature. Under normal experimental conditions, the fluid temperature in the
apparatus was maintained to within 0.1 ◦C for several hours.

Flow visualization was performed using the planar laser-induced fluorescence
(PLIF) technique. The dye solution consisted of the glycerin/water mixture with
Rhodamine 6G at a concentration of 500µg l−1. The dye concentration was suffi-
ciently low to minimize absorption effects. Dye was delivered to the flow through a
1.0 mm hole at the centre of the non-rotating endwall from a dye reservoir elevated
1.5 m above the experiment. The dye flow rate was extremely small, essentially match-
ing the local flow velocity, in order to minimize perturbations to the container flow.
Note that if the dye flow rate exceeded this iso-kinetic release, the resulting jet of
dye adversely perturbed the bubble and the effects of the perturbation were obvious
by visual inspection. For instance, excessive dye flow rates would not only change
the location and overall shape of the bubble but also lead to the onset of visible
unsteadiness (with the bubble darting up and down along the axis) even for governing
parameters in the steady flow regime.

An illumination sheet was generated with a pulsed Nd:YAG laser. The pulse energy
was 50 mJ and the sheet was formed by a combination of spherical and cylindrical
lenses such that the laser sheet was approximately 1 mm thick in the imaged region.
The laser sheet was vertically centred on each bubble before collecting data in order
to provide as uniform a distribution of incident light intensity as possible. This was a
critical step because the Lagrangian transport is quantified in terms of the intensity
of emitted light, which is proportional to both the dye concentration and incident
laser light intensity.
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A Kodak digital camera acquired the emitted light. A Tiffen Orange 21 filter was
used to block the green laser light, while passing the emitted yellow-orange light. The
1024 × 1024 pixel camera was tethered to a high-speed image capture board inside
a Pentium-based computer. Images were streamed directly to the hard drive array,
thus the computer RAM did not limit the number of images that could be collected.
Unless otherwise noted, the image capture rate for these data was 2.0 frames per
second, totalling 1440 images for each case. The image resolution ranged between 6.1
and 14.3 pixels mm−1 as dictated by the size of the individual bubbles.

We exercised great care to ensure that the dye injection hole was placed as close
to the centre of the stationary cover as possible. It has been previously argued in
the literature that the asymmetric aspects of vortex breakdown in the container
geometry may be artifacts of the visualization technique due to the inability to
locate the dye release hole exactly on the container centreline (Hourigan, Graham
& Thompson 1995; Stevens et al. 1999). As we have already discussed in detail in
Sotiropoulos & Ventikos (2001) and Sotiropoulos et al. (2001) and will further show
in the subsequent sections of this paper, all our experimental findings are supported
by the results of three-dimensional computations in which Lagrangian markers can
be introduced precisely on the centreline or distributed in a perfectly axisymmetric
manner around it. Moreover, and as has already been demonstrated experimentally
by Spohn et al. (1998), the fact that the downstream end of the bubble is open
and asymmetric is a structural feature of vortex breakdown and not an artifact of
a particular visualization. Therefore, while uncertainties due to the placement of the
dye-injection release hole cannot be entirely eliminated, they do not influence any of
the findings we report in the subsequent sections of this paper.

We also attempted to eliminate, or at least minimize as much as possible, asym-
metries of the experimental apparatus that could affect the visualized flow structures.
It is important to note that the shape of the characteristic asymmetric folds at the
downstream end of the bubble is extremely sensitive to very small experimental
imperfections. Figure 3 depicts the results of two experimental runs for Re = 1850
and H/R = 1.75. The vortex-breakdown bubble shown in figure 3(a) was obtained
after carefully minimizing all apparatus imperfections. The bubble shape shown in
figure 3(b), on the other hand, emerged when a controlled asymmetric forcing was
introduced into the flow field by slightly tilting the stationary cover by approximately
0.4◦. Following the introduction of this perturbation and after the initial transients
decayed, the steady-state flow structure shown in figure 3(b) emerged. Note that al-
though the location and overall size of the two bubbles are very similar, the asymmetric
forcing has a profound effect on the structure of the downstream asymmetric folds.
Compared to the unperturbed case (figure 3a), the spiral-in saddle of the perturbed
vortex-breakdown bubble appears to be more ‘open’ and is characterized by more
intense and clearly visible asymmetric folds. Moreover, the wake of the perturbed
bubble appears wider and the spiralling of the dye sheet is far more pronounced. The
apparent extreme sensitivity of the manifold structure of the spiral-in saddle to small
asymmetric forcing should not be surprising in the light of the critical role of the
Šil’nikov mechanism in breaking the invariance of the bubble surface (Sotiropoulos et
al. 2001) – see further discussion in § 7 below. All subsequently presented experiments
have been carried out without any explicit asymmetric forcing, other than, of course,
the small imperfections that are bound to remain in our apparatus even when great
care is taken to eliminate them (see Stevens et al. 1996 for a detailed discussion of
various sources of such asymmetries).

To validate our apparatus and ensure that the various uncertainties discussed above
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(a)

(b)

Figure 3. Visualized steady vortex-breakdown bubbles (Re = 1850, H/R = 1.75) in (a) a ‘perfect’
container; and (b) a container with the stationary lid tilted by approximately 0.4◦ from horizontal.
Bubble diameter is 0.49R.

(e.g. dye injection flow rate, temperature variations, apparatus asymmetries, etc.) do
not adversely impact the accuracy of our results, we ran a series of experiments for
two container aspect ratios (H/R = 1.75 and 2.0) over a broad range of Reynolds
numbers. We found that both the variation of flow structures with Re and H/R and
the number, overall size, shape and location of the vortex-breakdown bubbles are
in excellent agreement with Escudier’s (1984) benchmark experiments for this flow.
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To further validate our apparatus, the LIF images demonstrated excellent agreement
with superimposed calculated flow streamlines for all Re.

4. Experimental method for constructing Poincaré maps
Even though theoretical and numerical studies of chaotic advection in three-

dimensional flows are appearing with increasing frequency in the literature (see
Sotiropoulos et al. 2001 and Fountain et al. 2000 for recent reviews), experimental
studies have been strikingly scarce (Fountain, Khakar & Ottino 1998; Fountain et
al. 2000). The scarcity of experimental work is partly due to the lack of a simple
experimental technique for constructing Poincaré maps in the laboratory (Mezić &
Sotiropoulos 2002). In fact the first successful attempt to construct experimental
Poincaré maps for a chaotically advected three-dimensional flow was reported only
recently by Fountain et al. (1998, 2000). Fountain et al. employed injection needles
to deliver small blobs of dye at various locations within the chaotically advected
region of their low-Re flow and, thus, specify a set of initial ‘particle’ locations. The
intersections of the resulting streaks of dye with a laser sheet constitute, by definition,
the Poincaré map of the flow. This technique, however, is cumbersome to implement
and is not suitable for general three-dimensional flows – see Fountain et al. (2000).
Vortex-breakdown bubbles, for instance, are known to be extremely sensitive to small
disturbances (see discussion in § 3 above) and, thus, intrusive experimental techniques
are not appropriate.

In this work we developed a non-intrusive and simple to implement, experimental
technique for constructing Poincaré maps. The technique employs standard planar
LIF and can be summarized as follows. At t = 0 introduce fluorescent dye with
spatially non-uniform concentration within the chaotically advected region of the
flow. Assume that the concentration of dye is advected perfectly by the flow (i.e.
molecular diffusion effects are negligible) and illuminate a diametral plane with the
laser sheet to specify the plane for the Poincaré map. The dye concentration on this
plane is related linearly to the intensity of emitted light. Using digital photography,
collect a sufficiently long sequence of instantaneous LIF images and superimpose
them to compute the (Eulerian) time-average of the light intensity at every point on
the diametral plane. The level sets of the resulting time-averaged light intensity field
visualize the un-mixed islands of the Poincaré map of the flow. Mezić & Sotiropoulos
(2002) presented a formal mathematical proof of this assertion by showing that in
a steady flow the local Eulerian time-average of a quantity conserved along particle
paths, such as the concentration of fluorescent dye, is equal to the Lagrangian
time average of the same quantity along the particle path that passes through that
point. Ergodic theory rigorously establishes that as time approaches infinity such
a Lagrangian time average exists (see Mezić & Sotiropoulos 2002 for a detailed
discussion). This link between Eulerian and Lagrangian time averages places the
present experimental technique in the same context as earlier numerical studies in
which it was shown that unmixed islands in a chaotically advected flow are found
around the extrema of the Lagrangian time-average field (Mezić & Wiggins 1999;
Malhotra, Mezić & Wiggins 1999). For more details on the theoretical aspects of the
present technique along with its extension to time-periodic flows the reader is referred
to Mezić & Sotiropoulos (2002).

There are two prerequisites for successful application of the above technique: (i) the
initial spatial distribution of fluorescent dye within the chaotically advected region
must be non-uniform; and (ii) the averaging time must be shorter than the molecular
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diffusion time scale of the flow but longer than the characteristic time scale of the flow
(Mezić & Sotiropoulos 2002). To ensure that an initial non-uniform concentration of
dye was trapped in the interior of the bubble, we adopted a technique similar to that
used by Escudier (1984) to visualize the third bubble for governing parameters in the
steady three-bubble regime. For a given Reynolds number, we ran the experiment long
enough to ensure that transients had died out and a steady state had been established.
We started the flow of dye at a constant flow rate and as soon as the vortex-breakdown
bubble had become visible and a sufficient amount of dye was recirculating within
it, we imposed a mild unsteady perturbation by spinning-up (increasing Ω by 2% for
50 lid rotations) and then returning the rotating lid to the desired Re. The ensuing
transient flow introduced dye into the core of the bubble or pair of bubbles and
resulted in the desired non-uniform spatial distribution of concentration. As soon as
the desired rotational speed had been re-established, we allowed the flow to relax
to steady state before we commenced the image acquisition procedure. The second
prerequisite for the success of the experimental technique is also satisfied in all
subsequently reported experiments. A typical image acquisition period is 12 or 24
minutes (see the subsequent discussion) while the diffusion time scale of the dye over
the size of an unmixed island is estimated to be approximately one order of magnitude
longer. For instance, the diffusion time scale over the cross-sectional dimension of
the period-three island for the Re = 1850, H/R = 1.75 case (see figure 8c below)
is estimated to be 150 minutes, where the dye diffusivity is 10−9 m2 s−1. Note that a
12 minute image acquisition interval is sufficient for visualizing unmixed regions in
the flow because, as we will subsequently show, the averages of dye concentration
converge very rapidly at points within unmixed islands and other invariant sets (such
KAM-tori).

5. Numerical methods
A detailed description of the numerical method we employ to solve the Navier–

Stokes equations can be found in Sotiropoulos & Ventikos (1998). Here it suffices
to mention that we solve the Navier–Stokes equations in generalized, curvilinear
coordinates using a finite-volume approach that is second-order accurate both in space
and time. All results presented herein were obtained on a mesh with 153×97×97 grid
nodes in the axial and transverse directions, respectively (see Sotiropoulos & Ventikos
2001 for details of the mesh topology). Systematic grid refinement studies showed
that this grid density is sufficient for resolving both the Eulerian and Lagrangian
characteristics of the flow (see Sotiropoulos et al. 2001). Particle paths were calculated
using a fourth-order-accurate Runge–Kutta method in conjunction with a tri-linear
spatial interpolation technique. Extensive sensitivity studies were carried out to ensure
that the overall Lagrangian features of the flow are insensitive to the size of the time
increment used in the trajectory integration. A detailed discussion of these issues can
be found in Sotiropoulos et al. (2001).

6. Results and discussion
In this section we present the results of our experiments along with additional

computational results, which clarify and further reinforce the laboratory findings.
Experiments were performed for two aspect ratios (H/R = 1.75 and 2) and for a
range of Reynolds number in the steady flow regime. We begin our discussion by
presenting experimental evidence of the very long chaotic transients in the interior of
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(a) (b)

(d)(c)

(e) ( f )

Figure 4. Instantaneous iso-contours of light intensity for a steady vortex-breakdown bubble
(Re = 1850, H/R = 1.75). The images shown span an interval corresponding to 400 lid revolutions
and are equally spaced in time (time increases from a to f ). Bubble diameter is 0.49R.

the steady vortex-breakdown bubbles. We also document experimentally the bursting
events via which fluid exits the bubble and the very long residence times of dye
tracer in the interior of the bubble after the dye supply is interrupted. Subsequently
we employ the ergodic visualization method discussed above to construct Poincaré
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maps for various Reynolds numbers in the single-bubble regime. Finally, we report
results for a steady two-bubble flow and focus on the strikingly simple dynamics of
the second bubble.

6.1. Lagrangian transients in steady vortex-breakdown bubbles

To document experimentally the complex Lagrangian transients in the interior of
steady vortex-breakdown bubbles, we performed a set of visualization experiments
(figure 4) keeping the volume flow rate of dye tracer constant and observing its motion
within the bubble over very long intervals – typically of the order of several hundred
endwall rotations. The spatial and temporal variations of tracer concentration are
illustrated by plotting colour contours of the instantaneous light intensity distribution
obtained from the LIF technique. In all contour plots shown below, the light intensity
is scaled with the maximum light intensity so the levels vary between zero and one.

Figure 4 shows a sequence of instantaneous distributions of light intensity in the
interior of the steady vortex-breakdown bubble for Re = 1850 and H/R = 1.75. Note
that due to space considerations we only show herein results for one case. However,
all vortex-breakdown bubbles that we have visualized in this work exhibit the same
general trends.

There are several important observations that can be made based on the images
shown in figure 4. Perhaps the most intriguing feature, and one that has not been
previously identified in earlier studies, is that the transport of dye tracer in the
interior of the bubble appears to vary in a random and unsteady manner over the
entire observation interval. Similarly, the asymmetric folds at the downstream end
of the bubble are clearly seen to stretch, albeit very slowly, up and down with time
without any signs of reaching a steady state – we have observed vortex-breakdown
bubbles over much longer time intervals than the one shown herein and always
observed this slow stretching of the folds. A similar slow temporal variation of the
folds is also present in the visualization photographs of Spohn et al. (1998) (see the
sequence of images in figure 10 of their paper). Lagrangian unsteadiness is especially
evident within the cylindrical region surrounding the container axis. As discussed
in Sotiropoulos et al. (2001), this region is occupied by chaotic Šil’nikov orbits that
spiral upwards, from the spiral-in to the spiral-out saddles, and then downward along
the surface of the bubble. The chaotic stirring of these orbits and the arbitrarily long
transients associated with the infinite-period homoclinic orbits are responsible for the
random and unsteady motion of dye tracer within this columnar filament.

As shown experimentally in Spohn et al. (1998) and subsequently verified and
further clarified via numerical computations by Sotiropoulos & Ventikos (2000), the
bubble is filled and emptied through the downstream saddle focus – although not
shown herein, our experiments confirm the same filling and emptying mechanism
as described by Spohn et al. (1998). Sotiropoulos et al. (2001) further showed that
upstream-originating markers that enter the bubble exit in a seemingly random
sequence of bursting events during which clusters of markers exit the bubble. They
also showed that the rate of decay of an initial population of particles that originated
upstream and entered the breakdown region is a devil’s staircase distribution. The
images shown in figure 4 do suggest that, at least in a broad qualitative sense, this
bursting mechanism is indeed at work in steady vortex-breakdown bubbles. Notice
for instance that the light intensity at the exit of the bubble is not constant in time but
rather varies in a random manner. This seemingly random variation of light intensity
is clearly depicted in figure 5, which shows the time series of light intensity at a point
on the axis at the exit of the bubble for Re = 1850 and H/R = 1.75 – the time-series
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Figure 5. Time series of light intensity at a point on the centreline just downstream of the spiral-in
saddle of the steady vortex-breakdown bubble for Re = 1850, H/R = 1.75. The light intensity
is normalized by the maximum value Imax in the field, which typically occurs at the upstream
stagnation point.

data were extracted from the complete sequence of LIF images. It is evident from
this figure that there are relatively long time intervals during which the flow of tracer
through the spiral-in saddle is reduced to a minimum level. Such intervals correspond
to the longer plateaux of the devil’s staircase. On the other hand, clusters of distinct
spikes in the time series correspond to a series of short plateaux. Figure 5 also reveals
that both the waiting time between consecutive bursts (spikes) and the intensity of
each burst seem to vary in a random manner.

To document that the location of the bubble is stationary in time in our experiment,
we superimpose in figure 6 instantaneous snapshots of a single iso-surface of light
intensity over an observation interval of 526 endwall revolutions. It is apparent
from this figure that the overall shape and location of the bubble are remarkably
stable in time. Unsteady fluctuations of the light intensity are only visible in the
interior of the bubble and in the vicinity of the spiral-in saddle. It is important to
emphasize once again that the term ‘unsteadiness’ refers herein to the Lagrangian
transport. For all Reynolds numbers we have studied in this work the flow is
steady from the Eulerian standpoint and experimental evidence in support of this
assertion is provided in figure 6. The fact that the tracer motion is steady upstream
of the bubble strongly suggests that the approach flow is steady (from the Eulerian
standpoint) as well. Of course, one may argue that the apparent unsteadiness of tracer
transport within and downstream of the bubble could be due to flow unsteadiness
within the bubble. Since this is a closed recirculating flow system, however, unsteady
Eulerian modes excited within the vortex-breakdown bubble would affect the flow
throughout the entire container and, thus, would manifest themselves in the tracer
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Figure 6. An iso-surface of light intensity plotted at various instants in time for a steady vor-
tex-breakdown bubble. Re = 1850, H/R = 1.75, I/Imax = 0.35. The observation interval corresponds
to 526 lid revolutions and the iso-surface is plotted every 36 revolutions. Different lines correspond
to different instants in time. Bubble diameter is 0.49R.

motion upstream of the bubble as well. This argument is not, by itself, conclusive
enough to establish the steadiness of the flow with absolute certainty. This issue is
very important in the context of the present work since, as we have already discussed
above, even an arbitrarily small unsteady mode could drastically alter the Lagrangian
properties of the flow (Holmes 1984). Recall, however, that our experimental results
are corroborated by our earlier numerical computations. In Sotiropoulos et al. (2001)
we showed that in a steady-state velocity field residence times of upstream-originating
particles within the breakdown region could be very long and that their spatial
distribution, when mapped to upstream initial conditions, exhibits very complex fractal
properties. In fact, we found that as the spatial density of initial conditions increases,
initial conditions leading to progressively higher residence times are continuously
being uncovered. For example, at the finest resolution we employed in Sotiropoulos et
al. (2001) we found initial conditions that remained within the bubble for nearly 3000
lid rotations (approximately 60 minutes of dimensional time for our experimental
apparatus). Arbitrarily long Lagrangian transients may indeed be expected in the
laboratory because the time that is required for a steady Lagrangian image to be
obtained is equal to the maximum residence time for a fixed set of upstream initial
conditions and constant volume flow rate of markers originating from this set.

6.2. Residence times

To document experimentally the very long residence times of dye tracer within the
vortex-breakdown region, we performed an experiment aimed at quantifying the rate
at which a fixed amount of tracer, initially in the interior of bubble, decays in time.
The experiment was conducted as follows. First we set the rotational speed of the
lid to the desired Reynolds number and allowed sufficient time for the flow to reach
steady state. Subsequently we started releasing fluorescent dye to visualize the flow
and continued the supply of dye for approximately 100 lid revolutions to ensure that
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Figure 7. Time series of light intensity recorded after the dye supply was interrupted (t = 0) at
three points (see sketch for the locations) in the interior of the steady vortex-breakdown bubble for
Re = 1850, H/R = 1.75.

a sufficient amount of dye had entered the bubble. At that point, we interrupted the
supply of dye and started the data acquisition process. We recorded LIF images over
a time interval corresponding to 1300 lid revolutions. It is important to note that
no special attempt was made during this experiment to trap dye within the internal
toroidal region of the bubble using the previously described transient perturbation
technique.

Figure 7 depicts time series of light intensity at three pixels of the digital image
in the interior of the vortex-breakdown bubble for Re = 1850 and H/R = 1.75. The
specific points were selected because their respective time series are representative of
the various trends we recorded throughout the bubble. It is evident from this figure
that these trends vary significantly in different regions of the bubble and this is to be
expected given the richness and complexity of the dynamics. At the innermost point,
point 1 in figure 7, the light intensity remains at a low level for a very long time
but it starts increasing rapidly after approximately 1000 lid revolutions. As we have
already discussed above, in this experiment we made no attempt to trap dye in the
interior of the bubble. Thus, the blobs of tracer that arrived at point 1 after 1000
lid revolutions have been transported there along upstream-originating orbits that
penetrated the internal toroidal region. Recall that according to the numerical results
of Sotiropoulos et al. (2001), the innermost core of this toroidal region is foliated
with regular KAM-tori. This impermeable core is surrounded by nested cantori and
periodic islands submerged within stochastic regions. Particles introduced just outside
the outermost KAM-torus were shown by Sotiropoulos et al. (2001) to escape through
the cantori and exit the bubble. Since the flow is incompressible, the volume of the
bubble that is accessible to upstream-originating particles must be equal to its total
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volume minus the volume occupied by KAM-tori and unmixed islands (see related
discussion in MacKay 1994). Clearly, therefore, a subset of the total amount of tracer
that was in the bubble at t = 0 (when the dye supply was interrupted) will have to
reach the impermeable toroidal core before it starts moving again toward the axis on
its way to exit the bubble. The time series at point 1 in figure 7 suggests that this
process could require extremely long times, in fact much longer than the 1300 lid
revolutions interval for which we ran this experiment.

The light intensity at point 2 in figure 7 oscillates about a more or less constant
mean for almost 400 lid revolutions before it starts decaying. This trend suggests
the presence of a cantorus in the vicinity of this point. Orbits may be trapped on
such a leaky barrier for very long times and that could account for the long time
interval of oscillatory variation around a constant mean. Eventually, however, orbits
would start escaping, thus causing the observed temporal decay of light intensity at
this point. At point 3, which is located on the axis, the light intensity record starts
to decay after a rather short initial transient. As seen in figure 7, after approximately
100 lid revolutions the signal decays according to what appears to be a power law
distribution. We should note that we examined time series at several points between
points 2 and 3 (see figure 7) and found a similar power-law behaviour. In fact the
exponent of the power law seems to be the same for all points in this region. Notice
that even at point 2 when the light intensity starts to decay it appears to follow the
same power law. This apparent self-similarity and the power-law behaviour should
be attributed to the fractal Cantor-set-like structure of the leaky and sticky cantori
through which tracers must pass to exit the bubble (MacKay, Meiss & Percival 1984).

Although figure 7 shows temporal variations over an interval corresponding to 1300
lid revolutions (24 minutes), we have observed in the laboratory vortex-breakdown
bubbles for much longer time intervals (of the order of several thousands of lid
revolutions) and found that the inner toroidal region of the bubble remains visible
for extremely long times (of the order of hours, after the dye supply is interrupted).
These observations along with our previous discussion provide the first experimental
verification of the theoretical and computational predictions concerning the arbitrarily
long residence times of upstream-originating tracers within steady vortex-breakdown
bubbles.

6.3. Experimental Poincaré maps: Reynolds number and aspect ratio effects

Although the instantaneous LIF images discussed in the previous section are broadly
consistent with the computational findings of Sotiropoulos et al. (2001), they do not
provide the kind of information needed for direct quantitative comparisons with the
numerical calculations. Given the rich dynamics in the interior of vortex-breakdown
bubbles, such comparisons between computations and experiments can only be carried
out in terms of Poincaré maps. In this section we construct experimental Poincaré maps
using the ergodic visualization technique described in § 4 above. We present results for
two aspect ratios (H/R = 1.75 and 2) and various Reynolds numbers in the steady
flow regime. All experimental maps presented herein were constructed by averaging a
sequence of instantaneous LIF images collected over an interval of 12 minutes under
a continuous supply of dye at constant flow rate. For all cases, the time-averaged
light intensity field is scaled by the maximum light intensity that typically occurs just
upstream of the spiral-out saddle focus where the on-axis filament is deflected off the
axis. The invariant sets of the Poincaré map of the flow (unmixed island chains) are
visualized by plotting the level sets of the averaged light intensity field. Issues related
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to the length of the averaging interval needed for obtaining statistically converged
results are addressed in detail toward the end of this subsection.

Figure 8 depicts the experimental Poincaré maps for four Reynolds numbers for
a container with H/R = 1.75. In spite of the anticipated quantitative differences
due to Reynolds number effects, all four maps reveal broadly similar dynamics. The
uniformly coloured columnar filament along the axis in the interior of the bubbles
visualizes the ‘Šil’nikov filament’ (see Sotiropoulos et al. 2001) that connects the
spiral-in and spiral-out saddles. Efficient mixing of dye tracer in this filament results
in the observed nearly homogeneous distribution of the time-averaged light intensity.
According to the numerical Poincaré maps reported in Sotiropoulos et al. (2001),
particle paths in the internal toroidal region of the bubble exhibit a rich mixture of
regular and chaotic dynamics. The experimental maps suggest a similar complexity
level. For all four cases, for instance, the internal toroidal region is foliated by nested
tori, which could be either KAM-tori or cantori. Based on the numerical results of
Sotiropoulos et al. (2001), invariant KAM-tori persist in the innermost region of the
bubble, which for all cases shown in the figure has been penetrated by small amounts
of dye. Another important feature of the dynamics that appears to vary with Reynolds
number is the number and period of unmixed islands that emerge within the chaotic
regions. For the Re = 1350 case, for instance, there is only one period-two island.
For Re = 1600 (figure 8b), on the other hand, another period-two island chain and
a period-four island chain have formed. The complexity of the dynamics is seen to
further increase at Re = 1850, where period-two, period-three and period-four island
chains have clearly formed. The numerical computations of Sotiropoulos et al. (2001)
for this Reynolds number and aspect ratio (see figure 11 in Sotiropoulos et al. 2001)
are in excellent agreement with the image shown in figure 8(c), with regard to both the
period and relative location of the island chains. For the highest Reynolds number,
shown in figure 8(d ) (Re = 2100), the period-two island is no longer present but the
period-three and period-four chains persist.

Poincaré maps for a container with H/R = 2 are shown in figures 9(a) and 9(b)
for Re = 1492 and 1900, respectively. The latter Reynolds number is, for this aspect
ratio, within the two-bubble regime and a second steady vortex-breakdown bubble
exists downstream of that shown in figure 9(b). An instantaneous LIF image of
the two-bubble structure is shown in figure 10 while the dynamics of the second
bubble is discussed in the next subsection. For the Re = 1492 case there are no
unmixed islands in the interior of the bubble and this result is in accordance with the
numerical predictions of Sotiropoulos et al. (2001). Note that the four red marks along
the outer edge of the bubble in figure 9(a) mark the intersections of the upstream
columnar filament as it is deflected off the axis and spirals toward the spiral-in saddle
(see extensive discussion in Sotiropoulos & Ventikos 2001). For the Re = 1900 case
(figure 9b), a clearly defined period-two island has emerged and other higher-period
islands may also be present in the region between the period-two island and the
columnar filament along the axis (see the several red marks in that region).

An important issue that needs to be addressed in the context of our ergodic
visualization technique is with regard to the time interval over which data needs
to be collected in order to obtain statistically converged results. This is obviously
a critical issue since if excessive times are required for obtaining converged time-
averaged values, molecular diffusion could begin to smear the spatial gradients of
the light intensity field. As shown in Mezić & Sotiropoulos (2002), convergence
within low-period invariant tori should be very rapid. To demonstrate this theoretical
argument, we show in figures 11 and 12 the spectra of the experimental time series
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Figure 8. Experimental Poincaré maps for steady vortex-breakdown bubbles in a container with H/R = 1.75: (a) Re = 1350, bubble diameter is
0.23R; (b) Re = 1600, bubble diameter is 0.44R; (c) Re = 1850, bubble diameter is 0.49R; (d ) Re = 2100, bubble diameter is 0.50R.
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Figure 9. Experimental Poincaré maps for steady vortex-breakdown bubbles in a container with
H/R = 2.0: (a) Re = 1492, bubble diameter is 0.21R; (b) Re = 1900, first bubble diameter is 0.48R.
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Figure 10. Visualized steady vortex-breakdown bubbles for H/R = 2.0 and Re = 1900, first
bubble diameter is 0.48R.

of light intensity and the convergence history of the average of the light intensity,
respectively, at three points within the vortex-breakdown bubble shown in figure 9(b).
The first point is placed on the axis within the chaotic Šil’nikov filament, the second
point is placed within the period-two island, and the third point is within the
innermost toroidal region that is occupied by quasi-periodic orbits. The broadband
spectrum shown in figure 11(a) is consistent with the chaotic stirring of orbits within
the Šil’nikov filament. As seen in figure 12(a), the time-averaging procedure appears
to converge very slowly and this is in accordance with the existence of arbitrarily
long Šil’nikov transients in this region. The spectra shown in figures 11(b) and 11(c),
on the other hand, suggest two-frequency quasi-periodicity as, for each case, all
significant peaks are integer-linear combinations of the two fundamental frequencies,
f1 and f2. The quasi-periodicity of the light-intensity time series is consistent with
the quasi-periodic dynamics of particle paths moving along two-tori in the innermost
toroidal region and the period-two regular island, respectively. As seen in figure 12, the
time-averaging procedure at such points converges very rapidly, typically within 100
lid rotations. Even though we have only included results for one vortex-breakdown
bubble and at few representative points, examination of other data sets leads to the
same conclusion, namely that statistically converged results are obtained very rapidly
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Figure 11. Power spectra of light-intensity time series at three points within the first vor-
tex-breakdown bubble for Re = 1900, H/R = 2 (under continuous supply of dye at a constant
flow rate). The points are located (a) on the axis; (b) inside the period-2 island; and (c) within the
internal, quasi-periodic, toroidal region (see figure 9b).

within areas of regular motion (quasi-periodic period-one tori and higher-period
unmixed islands). Since, therefore, the aim of our ergodic experimental technique is to
identify regular islands of the flow, the above results show that statistically converged
invariant sets of Poincaré maps can indeed be obtained within time intervals far
shorter than the molecular diffusion time scale (see Mezić & Sotiropoulos 2002 for a
detailed discussion).

6.4. The dynamics of the second bubble in the steady two-bubble regime

As was first shown experimentally by Escudier (1984), there is a range of governing
parameters within which two or even three steady vortex-breakdown bubbles can form
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the three points of figure 11.

along the container axis. The two-bubble structures visualized by Escudier (1984),
which are very similar to the structure shown in figure 10, reveal that the first and the
second bubble have distinctly different features, with the latter appearing to be almost
perfectly axisymmetric and closed. It is evident in Escudier’s photographs that, unlike
the first bubble, very little dye penetrates the interior of the second bubble. In this
section we examine experimentally and computationally the Lagrangian dynamics of
the second bubble and identify the reasons for these apparent structural differences
between the two bubbles. In § 7 we show that these differences are due to the different
levels of swirl characterizing the two bubbles.

Figure 13 shows representative instantaneous iso-contours of light intensity over
a time interval spanning 600 lid revolutions. It is evident from this sequence of
images that the light intensity within the bubble varies continuously with time in a
manner similar to that observed for the chaotic vortex-breakdown bubble in figure 4.
Plotting iso-contours of the time-averaged light intensity field (figure 14), however,
yields an image which exhibits a high degree of symmetry with respect to the axis,
in stark contrast with the Poincaré maps for chaotic bubbles (see figure 9 above).
The interior of the bubble for this case is seen to be foliated by a sequence of
nested toroidal iso-surfaces of light intensity – the wiggles on some of the iso-contours
are due to slight variations in the light intensity of the laser sheet, which result
from the laser beam itself as well as slight irregularities in the Plexiglas container.
The remarkable symmetry of the experimental image appears to suggest that the
dynamics of the second bubble is fundamentally different from that of the first one
and that characterizing vortex-breakdown bubbles in the single-bubble regime.

To identify the reasons for the symmetry of the experimental map shown in figure 14,
we show in figure 15 the calculated Poincaré map for the second vortex-breakdown
bubble for Re = 1900 and H/R = 2. As seen in the computed map, orbits in the
interior of this bubble move along quasi-periodic, invariant tori. That is, the second
vortex-breakdown bubble exhibits essentially the same dynamics as the unperturbed
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Figure 13. Instantaneous iso-contours of light intensity within the second vortex-breakdown bubble for Re = 1900, H/R = 2, second bubble diameter
is 0.11R. The images shown span an interval corresponding to 600 lid revolutions (time increases from a to d ).
Figure 14. Experimental Poincaré map for the second vortex-breakdown bubble for Re = 1900, H/R = 2, second bubble diameter is 0.11R.
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Figure 15. Calculated Poincaré map for the second vortex-breakdown bubble for Re = 1900,
H/R = 2.

axisymmetric flow, even though for both the first and second bubbles the velocity
field is subject to the same level of three-dimensional disturbances.

It is important to note that the quasi-periodicity of the second bubble is entirely
consistent with the long transients of dye tracer suggested by the instantaneous LIF
images shown in figure 13. An integrable vortex-breakdown bubble would in general
be foliated by invariant two-tori whose rotation number could be either rational or
irrational. For rational tori, particles move along periodic orbits and will eventually
re-visit their initial location – even though for high-period tori very long times may
be required for this to occur. For irrational tori, on the other hand, orbits will cover
ergodically the entire torus, coming arbitrarily close to, but never exactly re-visiting,
their initial position. Such tori would exhibit infinitely long transients and along with
the very long transients of high-period rational tori would account for the apparent
unsteadiness of the dye tracer in the experimental images.

To demonstrate the quasi-periodic dynamics of the second bubble experimentally,
we show in figure 16 the power spectra of the light-intensity time series at three points
within the bubble: one on the axis and two in the interior. For the two inner points
the signals exhibit clear quasi-periodic variations while the on-axis signal is chaotic.
Although not shown herein, we have found that there is a cylindrical region around the
axis within which time series of light intensity exhibit similar chaotic characteristics.
For points sufficiently far from the axis we have consistently obtained quasi-periodic
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Figure 16. Power spectra of light intensity at three points within the second vortex-breakdown
bubble for Re = 1900, H/R = 2 (under continuous supply of dye at a constant flow rate: (a)
r/rb = 0, (b) r/rb = 0.33, (c) r/rb = 0.39). All three points are located at the same axial location (at
the bubble half-length): (a) on the axis; and (b) and (c) within the internal toroidal region (rb is
the maximum radial thickness of the bubble).

signals such as those shown in figure 16(b, c). Given the regular structure of the
computed Poincaré map in the vicinity of the axis (see figure 15), the reason for the
chaotic light-intensity signal in figure 16(a) is not readily apparent.

To explain this behaviour, we show in figure 17 the calculated trajectory of a single
particle initially placed within the first bubble. The particle recirculates for several
time units within the bubble, exits through the spiral-in saddle, spirals around the
second bubble, and enters it through its downstream end. When inside the second
bubble such orbits recirculate for several time units, spiralling upward along the
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Figure 17. Calculated orbit of a single particle starting within the first vortex-breakdown bubble
for Re = 1900, H/R = 2. The orbit recirculates for several time units within the first bubble, then
exits and enters the second bubble through its downstream end.

axis and then downward on the surface of the bubble and eventually exit without
penetrating the internal toroidal region. It is important to emphasize that even though
these orbits move in a manner similar to the Šil’nikov orbits in the first bubble, they do
not develop extreme sensitivity to initial conditions, as is evident from the calculated
Poincaré map shown in figure 15 – also see § 7 below.

Based on the trajectory shown in figure 17 and the computed Poincaré map shown
in figure 15, the second vortex-breakdown bubble can be described as an elongated
(egg-shaped) toroidal region, centred around the axis, within which orbits move along
nested quasi-periodic invariant tori. The cylindrical core of this toroidal structure
is occupied by upward-spiralling orbits, which originate upstream, enter the bubble
through its downstream end, and recirculate around the invariant toroidal region for
several time units before they finally exit through the downstream spiral-in saddle.
Many of these orbits, however, have previously visited the first bubble and, thus, been
chaotically stirred. In other words, in the experiment dye tracer enters the cylindrical
core of the second bubble at a rate that is determined by the random bursting events
via which tracer exits from the first bubble. That is, the chaotic time series shown in
figure 16(a) is not the manifestation of chaotic dynamics within the second bubble
but rather the signature of the chaotic outflow of tracer from the first bubble.
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Finally, the convergence of the time-averaged light intensity for the second bubble is
illustrated in figure 18. Once again, it is obvious that the averaging process converges
very rapidly (within 200 to 300 lid rotations) at points located on invariant quasi-
periodic tori, while the convergence of the chaotic time series on the axis is very
slow.

7. Dynamical bifurcations of vortex-breakdown bubbles: the role of swirl
intensity

In this section we study the bifurcations of a simple dynamical system with phase-
space dynamics strikingly similar to the Lagrangian dynamics of real-life steady
vortex-breakdown flow fields. This system is the normal form studied theoretically by
Broer & Vetger (1984) and discussed in Wiggins (1990) – see also the detailed dis-
cussion in Sotiropoulos et al. (2001). We select the various coefficients in this normal
form to ensure that the transporting velocity field is divergence-free (volume preserv-
ing case). We also modify the equations by introducing a steady three-dimensional
perturbation field. The perturbation field we (arbitrarily) chose herein is a mode-2
azimuthal disturbance in the axial velocity component and is designed to ensure that
the perturbed system also remains volume preserving. The system we study herein is

dx

dt
= 0.04− r2 − x2 + εr3 sin(2θ),

dr

dt
= rx,

dθ

dt
= ω, (7.1)

where ω is the angular velocity and ε is the parameter that controls the level of
the non-axisymmetric perturbation. We should point out that the velocity field in
the above equations does not satisfy the Navier–Stokes equations. It is, therefore,
important to emphasize that, unlike in previous studies of chaotic advection in which
particle path dynamics were studied using analytical solutions of the Navier–Stokes
equations (e.g. Stone, Nadim & Strogatz 1991; Ashwin & King 1997; Kroujiline
& Stone 1999), here we are only interested in the solutions of (7.1) to the extent
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(a) x= 0.5, ε = 0 (b) x= 0.5, ε = 0.1

(d ) x= 0.7, ε = 0.5(c) x= 0.5, ε = 0.5

( f ) x= 2.0, ε = 0.5(e) x= 1.0, ε = 0.5

Figure 19. Poincaré maps for the system given by equations (7.1) for various levels of perturbation
strength ε and swirl intensity ω.

that their dynamics is qualitatively similar to that of real-life vortex-breakdown flow
fields. In particular, we seek to understand the effect of ω and ε on the dynamics
of system (7.1) and, guided by this understanding, identify the key Eulerian quantity
that governs the dynamics of real-life vortex-breakdown flow fields and propose an
explanation for our experimental and computational findings. We compute the orbits
of system (7.1) and construct Poincaré maps for various ω and ε values (see figure 19).
For all cases shown in figure 19, the particle paths were calculated using the same
numerical method, the same time-increment, and a velocity field discretized on the
same computational mesh – a Cartesian 51× 51× 51 box containing the bubble was
used as the computational domain.

In the context of vortex-breakdown flows, the first set of computations (figures 19a
to 19c) can be thought as corresponding to an experimental situation where controlled
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asymmetric disturbances are introduced into the flow for a fixed Reynolds number
(defined by the axial velocity field) and swirl parameter (the ratio of azimuthal
to axial velocity components, determined by ω). The second set of computations
(figures 19d to 19f ) is aimed at investigating the effect of varying the swirl parameter
while keeping the Reynolds number constant within the same experimental apparatus
(fixed ε). Of course this analogy is more relevant to vortex-breakdown experiments
in open systems, where one can vary both the Reynolds number and swirl number
independently (Sarpkaya 1971a, b). For the container problem there is only one
control parameter (the lid rotational speed), which determines both the Reynolds
number and the swirl parameter.

For the unperturbed (ε = 0) ω = 0.5 case shown in figure 19(a), the bubble
shape appears perfectly axisymmetric (no asymmetric folds) and the internal toroidal
region is foliated by invariant KAM-tori. A small stochastic region is seen to exist
around the axis but this should be attributed to numerical chaos due to disturbances
introduced by the trajectory integration scheme. Note that it was not possible to
eliminate this small stochastic region even when we reduced the time step by one
order of magnitude. This finding is consistent with the theoretical analysis of Broer &
Vetger (1984) who showed that exponentially small disturbances could be sufficient
to break the invariance of the bubble, leading to infinite-period orbits homoclinic to
the two saddles and the onset of Šil’nikov chaos.

Figures 19(b) and 19(c) depict the effect of increasing ε as ω is held fixed (ω =
0.5). For ε = 0.1, the invariance of the bubble has broken and folds, similar to
those observed in the laboratory and the numerical simulations of vortex-breakdown
bubbles, have formed at the spiral-in saddle focus. The stochastic cylindrical region
around the axis has grown significantly and periodic islands have formed within the
chaotic region. The internal toroidal region has shrunk compared to the ε = 0 case,
but invariant KAM-tori still survive. Increasing the perturbation further (figure 19c)
leads to very pronounced folds and periodic islands of larger cross-sectional area.
Invariant tori are still present near the core, but the overall size of this integrable
toroidal region has shrunk considerably.

The Poincaré maps shown in figures 19(d ) to 19( f ) illustrate the effect of increasing
the swirl intensity for the same ε. Note that since the asymmetric perturbation is only
introduced in the axial velocity field, the axial and radial velocity components are
identical for all the maps shown in these figures. That is, from an Eulerian standpoint,
the only difference between the three flow fields is the magnitude of the angular
velocity ω. As seen in figures 19(c) and 19(d ), increasing the swirl velocity from 0.5
to 0.7 increases the size of the toroidal invariant region, reduces the cross-sectional
area of the islands, and nearly eliminates the asymmetric folds. As the swirl intensity
is increased to ω = 1.0, the chaotic Šil’nikov column around the axis shrinks to a
very thin cylindrical region and eventually disappears completely for ω = 2.0. The
bubbles shown in figures 19(e) and 19( f ) are foliated by periodic and quasi-periodic
invariant tori and characterized by an entirely axisymmetric shape.

These computations lead to the striking conclusion that even though the velocity
field can be three-dimensional, at sufficiently high swirl velocities the Lagrangian
dynamics are identical to those of the unperturbed, axisymmetric flow. High swirl
velocities have a profound stabilizing effect on the Lagrangian dynamics in a manner
that is reminiscent, at least in a qualitative sense, of the stabilizing effect that strong
rotation has on Eulerian turbulence.

The bifurcations of this simple dynamical system suggest explanations for a number
of our experimental and computational findings. As we have already discussed above
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Figure 20. Calculated swirl ratio profiles at representative locations upstream of the (a) first,
and (b) second vortex-breakdown bubbles for Re = 1900, H/R = 2. For reference, the upstream
stagnation points for the first and second bubbles are located at 0.4R and 0.9R, respectively, from
the stationary cover. rb is the maximum radius of the first bubble.

(see figure 3), introducing a controlled asymmetric disturbance in the apparatus causes
the folds at the downstream end of the bubble – the intersection of the spiralling stable
and unstable manifolds of the spiral-in saddle with the plane of section – to intensify.
Clearly figure 19(a–c) illustrates the same trends. In fact the bubble shape shown in
figure 19(c) is strikingly similar to that observed experimentally by Spohn et al. (1998)
when visualization tracers were introduced from a solder wire on the stationary cover.
Sotiropoulos & Ventikos (2001) argued that the small differences in the shape of the
bubbles obtained with different visualization methods in Spohn et al. (1998) should be
due to different disturbance levels introduced by the various techniques. Figure 19(a–
c) along with our experimental images shown in figure 3 provide further support for
this assertion. A possible explanation of the quasi-periodic dynamics of the second
vortex-breakdown bubble also emerges from the results shown in figure 19(d–f ) and
the relative intensity of the swirling motion in the vicinity of the first and second
vortex-breakdown bubbles. Figure 20 shows calculated profiles of the swirl ratio (ratio
of the azimuthal, Uθ , to axial, Ux, velocity components) at axial locations upstream
of the first and second bubbles, respectively, for the Re = 1900 and H/R = 2 case. As
seen in this figure, the swirl ratio in the vicinity of the second bubble is approximately
one order of magnitude greater. This trend is due to the fact that the axial velocity
is reduced dramatically near the second bubble while the azimuthal velocity is nearly
constant in the vicinity of the two bubbles. It can be readily seen from (7.1) that
varying ω from 0.5 to 2.0 while keeping all other parameters constant would cause
the maximum local swirl ratio upstream of the bubble in the model system to vary
from approximately less than 1 (figure 19c) to greater than 4 (figure 19f ), respectively.
Based on these observations and the results shown in figure 20 we argue herein that the
very high swirl level characterizing the second bubble stabilizes the Lagrangian orbits
and leads to the axisymmetric images observed in the laboratory. It is remarkable
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to note that the velocity field in the laboratory apparatus possesses the same level
of three-dimensional disturbances for the first and second bubbles. Yet, it appears
that the effect of these disturbances on the Lagrangian dynamics is almost entirely
mitigated when vortex-breakdown bubbles occur at high swirl levels.

8. Summary and closing remarks
We report herein the first experimental evidence confirming and further clarify-

ing previous theoretical and computational results concerning the rich Lagrangian
dynamics in the interior of steady vortex-breakdown bubbles. We have developed
the first non-intrusive visualization technique for constructing Poincaré maps in the
laboratory and obtained experimental maps that are in good agreement with the nu-
merical simulations. Finally, we argue that a simple Eulerian quantity, the swirl ratio,
is the key parameter that determines the complexity of the Lagrangian dynamics.
Vortex breakdown bubbles occurring at sufficiently high swirl intensities can exhibit
integrable quasi-periodic dynamics, even though they form within a three-dimensional
flow.

The present work, along with the previous experimental study of Spohn et al. (1998)
and the numerical simulations of Sotiropoulos & Ventikos (2001) and Sotiropoulos et
al. (2001), reinforces the similarities between vortex-breakdown bubbles in the confined
geometry and those forming in open systems (Sarpkaya 1971a, b; Faler & Leibovich
1977). Our findings further point to the conclusion that a great deal of caution
should be exercised when dye visualization experiments of vortex breakdown flows
are interpreted to derive conclusions about the Eulerian aspects of the phenomenon.
For example, the results we have presented herein suggest that Eulerian unsteadiness
is not an intrinsic feature of the bubble-mode of vortex breakdown. Of course, under
certain flow conditions vortex-breakdown bubbles in diffuser geometries (as well as in
the container problem) also form within an unsteady, from the Eulerian standpoint,
flow. Both Sarpkaya (1971a, b) and Faler & Leibovich (1977) have described bubbles
whose upstream stagnation point tends to dart back and forth along the axis in
a highly unsteady manner. Unsteady vortex-breakdown flow fields have also been
documented in more recent numerical (Spall, Gatski & Ash 1990) and experimental
(Brücker & Althaus 1992) studies. However, Sarpkaya (1971a, b) has also reported
that under certain flow conditions vortex-breakdown bubbles whose location is very
stable in time can be realized in the laboratory. Even for these cases, however,
the flow in the interior of the bubble has been described as being quite unsteady,
dominated, according to Sarpkaya (1971a, b), by the gyrations of a tilted toroidal
ring. Furthermore, both Sarpkaya (1971a, b) and Faler & Leibovich (1977) have
described essentially the same highly unsteady bursting mechanism via which the
bubble exchanges fluid with the surrounding flow. Our present results show that
this apparent unsteadiness of dye transport and the temporally complex emptying
mechanism observed in the laboratory do not necessarily imply that the transporting
velocity field is unsteady. Arbitrarily long Lagrangian transients in a steady three-
dimensional flow field with rich dynamics could produce highly unsteady dye transport
patterns and, thus, lead to the false conclusion of Eulerian unsteadiness.

An important structural characteristic of vortex-breakdown bubbles in diffuser
geometries is the temporary appearance of a filament of dye on the axis inside the
bubble (see figure 1a). Faler & Leibovich (1977) reported that this screw-worm-like
filament appeared in a seemingly random manner along the axis even after the dye
supply had been interrupted. The random temporal variations of dye concentration
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within this filament are consistent with the random variations of light intensity in the
vicinity of the axis in the images shown in figure 4. As we have already discussed,
such variations are due to the chaotic stirring of tracers as they recirculate along
Šil’nikov orbits of arbitrarily long period. Furthermore, tracers initially trapped in
the interior of the bubble would have to arrive in this columnar region before they
can exit the bubble along the unstable manifolds of the spiral-in saddle. Since such
tracers have to cross the multiple fractal barriers (cantori) that foliate the internal
toroidal region, they will not arrive in the vicinity of the axis in a continuous manner
but rather in a sequence of random bursting events. The motion of such tracers
would further contribute to the random variations of light intensity within the on-
axis filament. Once again, such complex temporal variations in the transport of dye
tracer do not necessarily imply that the transporting Eulerian flow is unsteady – Faler
& Leibovich (1977), however, reported that the velocity fields in their experiment were
indeed unsteady as the axial location of all vortex-breakdown bubbles they observed
appeared to drift back and forth along the axis in a random manner.

The persistence of dye in the interior of vortex-breakdown bubbles has also been
documented by both Sarpkaya (1971a, b) and Faler & Leibovich (1977) in their diffuser
experiments. They both reported that the inner region of the bubble remained visible
for as long as 20 s after the dye supply was interrupted. Obviously in our experiments
the tracer residence times appear to be considerably longer, at least in terms of
dimensional time. This trend, however, may be related to the fact that the container
flow is steady from an Eulerian perspective, while Faler & Leibovich (1977) studied
vortex breakdown in an unsteady Eulerian flow. The presence of even a very small
unsteady component of the flow could obviously have a dramatic impact on the
dynamics of the interior of the bubble and, thus, affect considerably the residence
times of upstream-originating tracers.

A link between swirl intensity and the degree of axisymmetry of vortex-breakdown
bubbles has been alluded to by Sarpkaya (1971a, b). In his pioneering 1971a paper he
states: “. . . For larger swirl or vane angles, the breakdown form moved progressively
upstream and at a definite combination of swirl and flow, the bubble became a
smooth and nearly symmetric body . . .”. It is important to recognize, however, that
neither Sarpkaya’s work nor any other of the previously reported experimental and
computational studies of vortex breakdown in open systems were carried out with
the rich Lagrangian properties of the phenomenon in mind. Further experimental
and computational studies are required before the significance of our findings can
be fully understood in the context of vortex breakdown in open systems. We hope
that our work on the confined flow and our discussion in this section will stimulate
and help guide such studies. Additional work is also needed in order to develop a
formal theory that explains and quantifies the apparent link between swirl intensity
and the richness of the Lagrangian dynamics. Such a theory could lead to a rigorous
framework for controlling mixing efficiency and the residence time distribution in
vortex-breakdown bubbles in flows of technological significance.

Our work so far has focused on the dynamics of vortex-breakdown bubbles in
the container flow. There is, however, experimental and computational evidence sug-
gesting that the global recirculating flow within the container may also exhibit rich
Lagrangian dynamics. Experiments (Spohn et al. 1998) and computations (Sotiropou-
los & Ventikos 1998, 2001) have shown, for instance, that the flow within the sidewall
boundary layers is dominated by spiral modes, which in the unsteady regime evolve
into quasi-stationary spiral vortices. Furthermore, Goldshtik et al. (1992) and Husain
et al. (1995) have documented a perplexing Lagrangian phenomenon in this flow,
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which they dubbed ‘anomalous separation’. They observed that an initially homo-
geneous particle–fluid mixture in a container similar to that we have studied herein
separates into its components shortly after the lid begins to rotate. Kinematic ef-
fects are suspected as the separating mechanism (Goldshtik et al. 1992; Husain et
al. 1995), but a satisfactory explanation of this intriguing phenomenon has yet to be
developed. Combined computational and experimental studies of Lagrangian trans-
port within the entire container using the techniques that we have developed for the
vortex-breakdown bubbles will be needed in order to illuminate these phenomena.

We thank Yiannis Ventikos, Todd Taylor and Anny Huang for assisting with the
apparatus design and preliminary experiments. The computations were performed on
the multiprocessor Silicon Graphics Origin 2000 system of the Office of Information
Technology at the Georgia Institute of Technology. F. S. and T. C. L. were supported
by NSF grant CMS-9875691.
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Malhotra, N., Mezić, I. & Wiggins, S. 1999 Patchiness: A new diagnostic for Lagrangian trajectory
analysis in time-dependent fluid flows. Intl J. Bifurcation Chaos 8, 1053.
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